翻訳と辞書
Words near each other
・ Shannon Taylor
・ Shannon Thunderbird
・ Shannon Tindle
・ Shannon Torrez
・ Shannon Township
・ Shannon Township, Atchison County, Kansas
・ Shannon Tubb
・ Shannon Tweed
・ Shannon Vreeland
・ Shannon Vyff
・ Shannon Walker
・ Shannon Walker (rugby)
・ Shannon Walker Williams
・ Shannon Walsh
・ Shannon Watt
Shannon wavelet
・ Shannon Waverly
・ Shannon Welcome
・ Shannon Wheeler
・ Shannon Whirry
・ Shannon Willoughby
・ Shannon Wilson
・ Shannon Withem
・ Shannon Woodward
・ Shannon Worrell
・ Shannon Wright
・ Shannon Wynne
・ Shannon's Deal
・ Shannon's law
・ Shannon's law (Arizona)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Shannon wavelet : ウィキペディア英語版
Shannon wavelet
In functional analysis, a Shannon wavelet may be either of real or complex type.
Signal analysis by ideal bandpass filters defines a decomposition known as Shannon wavelets (or sinc wavelets). The Haar and sinc systems are Fourier duals of each other.
== Real Shannon wavelet ==

The Fourier transform of the Shannon mother wavelet is given by:
: \Psi^(w) = \prod \left( \frac \right)+\prod \left( \frac \right).
where the (normalised) gate function is defined by
: \prod ( x):=
\begin
1, & \mbox , \\
0 & \mbox \mbox. \\
\end
The analytical expression of the real Shannon wavelet can be found by taking the inverse Fourier transform:
: \psi^(t) = \operatorname \left( \frac \right)\cdot \cos \left( \frac \right)
or alternatively as
: \psi^(t)=2 \cdot \operatorname(2t - 1)-\operatorname(t),
where
: \operatorname(t):= \frac
is the usual sinc function that appears in Shannon sampling theorem.
This wavelet belongs to the C^\infty-class of differentiability, but it decreases slowly at infinity and has no bounded support, since band-limited signals cannot be time-limited.
The scaling function for the Shannon MRA (or ''Sinc''-MRA) is given by the sample function:
: \phi^(t)= \frac = \operatorname(t).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Shannon wavelet」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.